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INTRODUCTION
Context



INTRODUCTION
Trajectory Classification

● Trajectory data mining is important for discovering interesting knowledge and behavior 
about different objects as people, animals, vehicles, weather condition;

● An important data mining technique is classification:
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Trajectory classification is the task of discovering the class label of 
a moving object based on its trajectories (Lee et al.2008).



INTRODUCTION
Motivation

Applications of 
Trajectory Classification

a. Transportation mean classification; 
b. The  strength  level  of  a  hurricane / 

Natural disaster prediction; 
c. The type of a vessel;
d. Animal categories
e. The moving object, owner of the trajectory.
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→ A Multiple Aspect Trajectory Ti is a sequence of m elements Ti = ⟨ e1, 
e2, ..., em ⟩, where each element is characterized by  a set of l 
dimensions D={ d1, d2, ..., dl }, also called aspects. 

→ Multiple and heterogeneous dimensions.
[Ferrero et al., 2016; Mello et al., 2019] 9

BASIC CONCEPTS: 
Trajectory



BASIC CONCEPTS: 
Subtrajectory
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Basic Concepts: 
What is a movelet? 

Inspired by time series shapelet [Ye, L.;  Keogh, E., 2011] a movelet is a subtrajectory that 
used by a classifier, better discriminate a class:

Work. Coffee

Movelet:



PROBLEM DEFINITION

● The problem of trajectory classification relies on finding  the best 
trajectory or subtrajectory features to use as input to a classifier;

● Related works do not propose new classifiers (RF, NN, DT)
● So far, Movelets has been one of the best approaches:

- highest accuracy 
- general problems
- Interpretable patterns;
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1st Semantic 
Classification

(TRAGOPOULOU;  
VARLAMIS;EIRINAKI, 2014) 

(VARLAMIS, 2015)

Transportation
Mean

(ETEMAD; SOARES 
JÚNIOR; MATWIN, 2018) 
(DABIRI; HEASLIP, 2018) 

(XIAO et al.,  2017)

General
(SANTOS; JR; 

ALVARES, 2011)

Survey *
(LEITE DA SILVA;  

MAY PETRY;  
BOGORNY, 2019)

Movelets
(FERRERO et al., 2018)

MASTERMovelets
(FERRERO et al., 2020)

13*Deals with multiple dimensions

            POI-F

Trajectory Classification Related Works

SUPERMovelets
(PORTELA et al., 2021)

 MARC

(MAY PETRY et al., 2020)

(VICENZI et al., 2020)

HiPerMovelets
(PORTELA et al., 2022)



■ Parameter free;
■ Analyze every possible subtrajectory and computes the distance of all 

subtrajectories of the same size in the dataset.

MOVELETS EXTRACTION
MASTERMovelets 
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RESEARCH PROBLEM: 
How to efficiently extract movelets?
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Basic Concepts: 
Subtrajectory Distances
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Of T1 Of T2



■ Ranking distances

■ Best Alignment

MOVELETS EXTRACTION
Ranking and Best Alignment
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MOVELETS EXTRACTION
Finding the Split Point
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(Ferrero et. al, 2020)

MASTERMovelets



MASTERMovelets Complexity

20

■ n → the number of trajectories;

■ m → the length of the longest trajectory, and;

■ l → the number of dimensions in the dataset
Memory:  it stores at most n × m candidates for all trajectories. 

O(n × m2 × l) → Matrix of Distances *
Running Time: the overall time complexity is 

O( n3 × m3 log m × 2l )

■ Limitations: 
○ Unfeasible for Big Data and high dimensional datasets.
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MASTERMovelets            x            SUPERMovelets
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Fast Movelet Extraction and Dimensionality Reduction for Robust Multiple Aspect Trajectory 
Classification. In Brazilian Conference on Intelligent Systems (BRACIS), 2021.

SUPERMovelets



EXPERIMENTAL RESULTS
Highlights
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■ SUPERMovelets movelet extraction: 
○ Movelet extraction at least 50% faster than MASTERMovelets; 

■   SUPERMovelets accuracy:
○ Same accuracy as MASTERMovelets (less than 1% difference);
○ Generates significantly less movelets (65-93% reduction);
○ Faster to build classification models.

■ Limitations: 
○ Unfeasible for Big Data and high dimensional datasets*



HiPerMovelets: high-performance movelet extraction for trajectory classification. 
International Journal of Geographical Information Science, 2022. DOI: 
10.1080/13658816.2021.2018593

HiPerMovelets
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EXPERIMENTAL RESULTS
Highlights
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■ HiPerMovelets in Multiple Aspect Trajectories Datasets (check-ins): 

○ Run time is up to 10x faster than MASTERMovelets; 
○ Higher or same accuracy than MASTERMovelets;;
○ Generates less movelet candidates and movelets.

■ Limitations: 
○ Unfeasible for Big Data and high dimensional datasets.



Open Issues:
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1. For which domains Movelets are best suited?
(Multiple Aspect Trajectories and Multivariate Time Series)

2. Which are the best strategies to extract movelets?
(Optimizing search for Best alignment and Split points)

3. How to improve classification methods?
(Employing movelets in Multivariate Time Series Classification, and 
vice-versa)
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GENERIC
high frequency, 

NOT discriminant 
behaviors

DATASETS

Multiple-aspect Datasets
Brightkite, Gowalla, 

Foursquare NYC

SPATIAL
less frequency 

and discriminant 
behaviors

SPECIFIC
high frequency 

and discriminant 
behaviors
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Raw Datasets
Animals, GoTrack,

Vehicles

SPATIO-
TEMPORAL

Higher GPS  
granularity

Semantic 
Datasets

Multivariate Time Series 
Datasets



Time Series Optimization

EARLY ABANDONING
(YE; KEOGH, 2011)
(MUEEN; KEOGH; YOUNG, 2011)

SAMPLING THE DATASET
(JI et al.,  2019).

ANALYSIS OF VARIANCE 
A(NOVA)

(ZUO; ZEITOUNI; TAHER, 2018)

LOCAL FISHER DISCRIMINANT 
ANALYSIS (LFDA)
(ZHANG et al., 2018)

SAX
(RAKTHANMANON; KEOGH, 2013)
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PROPOSED OPTIMIZATIONS
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A) Pruning based on repetition 
(prunes candidates that doesn’t repeat in the trajectory)

B) Pruning based on frequency
(prunes less frequent candidates)

C) Random selection   * for baseline
(randomly select candidates to evaluate as movelets)



Propose new methods to optimize the 
movelets discovery for trajectory classification. 

■ Propose techniques for trajectory classification based on reducing the search 
space, dimensionality and number of comparisons;
◂ An algorithm to reduce the search space for extracting movelets;
◂ An algorithm to reduce the number of dimensions for extracting movelets;
◂ An algorithm that uses a multidimensional index to reduce the number of 

comparisons for extracting movelets;
■ Experiments for validating the proposed method and MASTERMovelets 

(scalability, comparisons of accuracy, processing time, classification times and 
number of movelets).

OBJECTIVE
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Basic Concepts: 
Element Distances
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Basic Concepts: 
Subtrajectory Distances
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HiPerMovelets
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HiPerMovelets 
Pivots
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EXPERIMENTAL RESULTS

Scalability:
Number of Trajectories

All experiments: faster as 
trajectories are added
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EXPERIMENTAL RESULTS

Scalability:
Number of Points

All experiments: 
faster as points are added
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EXPERIMENTAL RESULTS

Scalability:
Number of Dimensions

All experiments: faster as 
dimensions are added
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